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Abstract
Background : Nodular goiter (NG) is an internationally important
health problem.
Objectives: The aim of this exploratory study was to examine the
content of ten trace elements (TE): silver (Ag), cobalt (Co), chromium
(Cr), iron (Fe), mercury (Hg), rubidium (Rb), antimony (Sb), scandium
(Sc), selenium (Se), and zinc (Zn) in the normal thyroid and in the
thyroid tissues with diagnosed colloid NG.
Methods : Thyroid tissue levels of TE were prospectively evaluated
in 46 patients with NG and 105 healthy inhabitants. Measurements
were performed using non-destructive instrumental neutron activation
analysis with high resolution spectrometry of long-lived radionuclides.
Tissue samples were divided into two portions. One was used for
morphological study while the other was intended for TE analysis.
Results : It was found that contents of Ag, Co, Cr, Fe, Hg, Sc, and Zn
were significantly higher in goitrous thyroid than in normal gland.
Conclusions : There are considerable changes in TE contents in the
goitrous transformed tissue of thyroid.
Keywords: Thyroid nodular goiter, Intact thyroid, Trace elements,
Instrumental neutron activation analysis
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1 INTRODUCTION

No less than 10 % of the world population is
affected by goiter detected during the exam-
ination and palpation and most of these thy-

roidal lesions are nodular goiters (NG) (1). However,

using ultrasonography NG can be detected in almost
70% of the general population (2). NG is also known
as endemic nodular goitre, simple goitre, nodular hy-
perplasia, nontoxic uninodular goitre ormultinodular
goiter (3). NG is benign lesions; however, during
clinical examination, they can mimic malignant tu-
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mors. NG can be hyperfunctioning, hypofunctioning,
and normal functioning. EuthyroidNG is defined as a
local enlargement of thyroid without accompanying
disturbance in thyroid function (3).
For over 20th century, there was the dominant opin-
ion that NG is the simple consequence of iodine defi-
ciency. However, it was found that NG is a frequent
disease even in those countries and regions where the
population is never exposed to iodine shortage (4).
Moreover, it was shown that iodine excess has severe
consequences on human health and associated with
the presence of thyroidal disfunctions and autoim-
munity, NG and diffuse goiter, benign and malignant
tumors of gland (5–8). It was also demonstrated that
besides the iodine deficiency and excess many other
dietary, environmental, and occupational factors are
associated with the NG incidence (9–11). Among
them a disturbance of evolutionary stable input of
many chemical elements in human body after indus-
trial revolution plays a significant role in etiology of
thyroidal disorders (12).
Besides iodine involved in thyroid function, other
trace elements (TE) have also essential physiolog-
ical functions such as maintenance and regulation
of cell function, gene regulation, activation or in-
hibition of enzymatic reactions, and regulation of
membrane function (13). Essential or toxic (goitro-
genic, mutagenic, carcinogenic) properties of TE
depend on tissue-specific need or tolerance, respec-
tively (13).Excessive accumulation or an imbalance
of the TE may disturb the cell functions and may
result in cellular degeneration, death, benign or ma-
lignant transformation (13–15).
In our previous studies the complex of in vivo and
in vitro nuclear analytical and related methods was
developed and used for the investigation of iodine
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and other TE contents in the normal and patho-
logical thyroid (16–22). Iodine level in the normal
thyroid was investigated in relation to age, gender
and some non-thyroidal diseases (23, 24). After that,
variations of TE content with age in the thyroid
of males and females were studied and age- and
gender-dependence of some TE was observed (25–
41). Furthermore, a significant difference between
some TE contents in normal and cancerous thyroid
was demonstrated (42–47).
To date, the pathogenesis of NG has to be considered
as multifactorial. The present study was performed
to clarify the role of some TE in the maintenance
of thyroid growth and goitrogenesis. Having this in
mind, our aim was to assess the silver (Ag), cobalt
(Co), chromium (Cr), iron (Fe), mercury (Hg), rubid-
ium (Rb), antimony (Sb), scandium (Sc), selenium
(Se), and zinc (Zn) contents in NG tissue using non-
destructive instrumental neutron activation analysis
with high resolution spectrometry of long-lived ra-
dionuclides (INAA-LLR). A further aimwas to com-
pare the levels of these ten TE in the goitrous thyroid
with those in intact (normal) gland of apparently
healthy persons.
All studies were approved by the Ethical Commit-
tees of the Medical Radiological Research Centre
(MRRC), Obninsk. All the procedures performed in
studies involving human participants were in accor-
dance with the ethical standards of the institutional
and/or national research committee and with the
1964 Helsinki declaration and its later amendments,
or with comparable ethical standards.

2 MATERIALS AND METHODS

Samples
All patients suffered from NG (n=46, mean age
M±SD was 48±12 years, range 30-64) were hos-
pitalized in the Head and Neck Department of
the Medical Radiological Research Centre. Thick-
needle puncture biopsy of suspicious nodules of the
thyroid was performed for every patient, to permit
morphological study of thyroid tissue at these sites
and to estimate their TE contents. For all patients the
diagnosis has been confirmed by clinical and mor-
phological results obtained during studies of biopsy
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and resected materials. Histological conclusion for
all thyroidal lesions was the colloid NG.
Normal thyroids for the control group samples were
removed at necropsy from 105 deceased (mean age
44±21 years, range 2-87), who had died suddenly.
The majority of deaths were due to trauma. A his-
tological examination in the control group was used
to control the age norm conformity, as well as to
confirm the absence of micro-nodules and latent
cancer.
All tissue samples were divided into two portions
using a titanium scalpel (48). One was used for
morphological study while the other was intended
for TE analysis. After the samples intended for TE
analysis were weighed, they were freeze-dried and
homogenized (49). The pounded sample weighing
about 5-10 mg (for biopsy) and 50 mg (for resected
materials) was used for trace element measurement
by INAA-LLR. The samples for INAA-LLR were
wrapped separately in a high-purity aluminum foil
washed with rectified alcohol beforehand and placed
in a nitric acid-washed quartz ampoule.
Standards and certified reference material
To determine contents of the TE by comparison with
a known standard, biological synthetic standards
(BSS) prepared from phenol-formaldehyde resins
were used (50).In addition to BSS, aliquots of com-
mercial, chemically pure compounds were also used
as standards. Ten certified reference material IAEA
H-4 (animal muscle) and IAEA HH-1 (human hair)
sub-samples weighing about 50 mg were treated and
analyzed in the same conditions that thyroid samples
to estimate the precision and accuracy of results.
Instrumentation and method
A vertical channel of nuclear reactor was applied
to determine the content of Ag, Co, Cr, Fe, Hg,
Rb, Sb, Sc, Se, and Zn by INAA-LLR. The quartz
ampoule with samples of thyroid, standards, and
certified reference material was soldered, positioned
in a transport aluminum container and exposed to
a 24-hour neutron irradiation in a vertical channel
of the WWR-c research nuclear reactor (Branch of
Karpov Institute, Obninsk) with a neutron flux of
1.3×1013 n×cm−2×s−1. Ten days after irradiation
samples were reweighed and repacked.

The samples were measured for period from 10 to
30 days after irradiation. The duration of measure-
ments was from 20 min to 10 hours subject to pulse
counting rate. The gamma spectrometer included
the 100 cm3 Ge(Li) detector and on-line computer-
based MCA system. The spectrometer provided a
resolution of 1.9 keV on the 60Co 1332 keV line.
Details of used nuclear reactions, radionuclides, and
gamma-energies were presented in our earlier pub-
lications concerning the INAA of TE contents in
human prostate and scalp hair (51, 52).
Statistical Analysis
A dedicated computer program for INAA mode op-
timization was used (53). All thyroid samples were
prepared in duplicate, and mean values of TE con-
tents were used in final calculation. Using Microsoft
Office Excel, a summary of the statistics, including,
arithmetic mean, standard deviation, standard error
of mean, minimum and maximum values, median,
percentiles with 0.025 and 0.975 levels was calcu-
lated for TE contents. The difference in the results
between two groups (normal and goitrous thyroid)
was evaluated by the parametric Student’s t-test and
non-parametric Wilcoxon-Mann-Whitney U-test.

3 RESULTS

Table 1 depicts our data for Ag, Co, Cr, Fe, Hg,Rb, 
Sb, Sc, Se, and Zn mass fractions in ten sub-
samples of IAEA H-4 (animal muscle) and IAEA 
HH-1 (human hair) certified reference material and 
the certified values of this material.
Table 1: INAA-LLR data of trace element con-
tents in certified reference material IAEA H-4 
(animal muscle) and IAEA HH-1 (human hair) 
compared to certified values ((mg/kg, dry mass 
basis)
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Table 2: Some statistical parameters of Ag, Co,
Cr, Fe, Hg,Rb, Sb, Sc, Se, and Zn mass fraction
(mg/kg, dry mass basis) in normal thyroid and
colloid nodular goiter

M – arithmetic mean, SD – standard deviation, SEM
– standard error of mean, Min – minimum value,
Max – maximum value, P 0.025 – percentile with
0.025 level, P 0.975 – percentile with 0.975 level.
The comparison of our results with published data
for Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn mass
fraction in normal and goitrous thyroid (54–74) is
shown in Table 3.
The ratios of means and the difference betweenmean
values of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and
Zn mass fractions in normal and goitrous thyroid are
presented in Table 4.

4 DISCUSSION

Precision and accuracy of results

Good agreement of the Ag, Co, Cr, Fe, Hg, Rb, Sb,
Sc, Se, and Zn contents analyzed by INAA-LLRwith
the certified data of CRM IAEA H-4 and IAEA HH-
1 (Table 1) indicates an acceptable accuracy of the
results obtained in the study of TE of the thyroid
presented in Tables 2–4.
The mean values and all selected statistical parame-
ters were calculated for ten TE (Ag, Co, Cr, Fe, Hg,
Rb, Sb, Sc, Se, and Zn) mass fractions (Table 2). The
mass fraction of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se,
and Zn were measured in all, or a major portion of
normal and goitrous tissue samples.
Comparison with published data
In general, values obtained for Cr, Fe, Hg, Rb, Sb,
Sc, Se, and Zn contents in the normal human thyroid
(Table 3) agree well with median of mean values
reported by other researches (54–66). The obtained
means for Ag and Co were almost one order of mag-
nitude lower median of previously reported means
but inside the range of means (Table 3). A number of
values for TE mass fractions were not expressed on a
dry mass basis by the authors of the cited references.
However, we calculated these values using published
data for water (75%) (75) and ash (4.16% on dry
mass basis) (76) contents in thyroid of adults.
Table 3 . Median, minimum and maximum value
of means Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and
Zn contents in normal and goitrous thyroid ac-
cording to data from the literature in comparison
with our results (mg/kg, dry mass basis)
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El - element, M –arithmetic mean, SD – standard
deviation, (n)* – number of all references, (n)** –
number of samples.
Table 4. Differences between mean values
(M±SEM) of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc,
Se, and Zn mass fraction (mg/kg, dry mass basis)
in normal thyroid and colloid nodular goiter

M– arithmetic mean, SEM – standard error of mean,
Statistically significant values are in bold.
Data cited in Table 3 for normal thyroid also includes
samples obtained from patients who died from dif-
ferent non-endocrine diseases. In our previous study
it was shown that some non-endocrine diseases can
effect on TE contents in thyroid (24). Moreover, in
many studies the “normal” thyroid means a visually
non-affected tissue adjacent to benign or malignant
thyroidal nodules. However, there are no data on a
comparison between the TE contents in such kind
of samples and those in thyroid of healthy persons,
which permits to confirm their identity.
Our results for goitrous tissues were comparable with
published data for Ag, Fe, Rb, Se, and Zn contents
(Table 3). The obtained means for Co, Cr, and Sb
were approximately 10.6, 4.3, and 4.3, respectively,
times lower median of previously reported means,
herewith, mean for Cr was inside the range of these
means, but mean for Co and Sb were outside (Table
3). No published data referring Hg and Sc contents
of goitrous thyroid tissue were found.
The range ofmeans of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc,
Se, and Zn level reported in the literature for normal
and for goitrous thyroid vary widely (Table 3). This
can be explained by a dependence of TE content
on many factors, including “normality” of thyroid
samples (see above), the region of the thyroid, from

which the sample was taken, age, gender, ethnicity,
mass of the gland, and the goiter stage. Not all
these factors were strictly controlled in cited studies.
However, in our opinion, the leading causes of inter-
observer variability can be attributed to the accu-
racy of the analytical techniques, sample preparation
methods, and inability of taking uniform samples
from the affected tissues. It was insufficient quality
control of results in these studies. In many scientific
reports, tissue samples were ashed or dried at high
temperature for many hours. In other cases, thyroid
samples were treated with solvents (distilled water,
ethanol, formalin etc). There is evidence that during
ashing, drying and digestion at high temperature
some quantities of certain TE are lost as a result of
this treatment. That concerns not only such volatile
halogen as Br, but also other TE investigated in the
study (77–79).
Effect of goitrous transformation on ChE con-
tents
From Table 4, it is observed that in goitrous tissues
the mass fractions of all TE investigated Ag, Co,
Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn are 15.0, 1.57,
1.58, 1.51, 23.4, 1.20, 1.32, 2.83, 1.33, and 1.24
times, respectively, higher than in normal tissues of
the thyroid. However, the changes for Ag, Co, Cr,
Fe, Hg, Sc, and Zn are just statistically significant.
Thus, if we accept the TE contents in thyroid glands
in the control group as a norm, we have to conclude
that with a goitrous transformation the Ag, Co, Cr,
Fe, Hg, Sc, and Zn contents in thyroid tissue signifi-
cantly changed.
Role of ChE in goitrous transformation of the
thyroid
Characteristically, elevated or reduced levels of TE
observed in goitrous tissues are discussed in terms of
their potential role in the initiation and promotion of
goiter. In other words, using the low or high levels
of the TE found in goitrous tissues, researchers try
to determine the goitrogenic role of the deficiency
or excess of each TE in investigated organ. In our
opinion, abnormal levels of many TE in NG could be
and cause, and also effect of goitrous transformation.
From the results of such kind studies, it is not always
possible to decide whether the measured decrease or
increase in TE level in pathologically altered tissue
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is the reason for alterations or vice versa..
Silver
Ag is a TE with no recognized trace metal value in
the human body (80). Ag inmetal form and inorganic
Ag compounds ionize in the presence of water, body
fluids or tissue exudates. The silver ion Ag+ is bio-
logically active and readily interacts with proteins,
amino acid residues, free anions and receptors on
mammalian and eukaryotic cell membranes (81).
Besides such the adverse effects of chronic expo-
sure to Ag as a permanent bluish-gray discoloration
of the skin (argyria) or eyes (argyrosis), exposure
to soluble Ag compounds may produce other toxic
effects, including liver and kidney damage, irritation
of the eyes, skin, respiratory, and intestinal tract, and
changes in blood cells (82). More detailed knowl-
edge of the Ag toxicity can lead to a better under-
standing of the impact on human health, including
thyroid function.
Cobalt
Health effects of high Co occupational, environmen-
tal, dietary and medical exposure are characterized
by a complex clinical syndrome, mainly including
neurological, cardiovascular and endocrine deficits,
including hypothyroidism and goiter (83, 84). Co is
genotoxic and carcinogenic, mainly caused by oxida-
tive DNA damage by reactive oxygen species, per-
haps combined with inhibition of DNA repair (85).
In our previous studies it was found a significant age-
related increase of Co content in female thyroid (25).
Therefore, a goitrogenic and, probably, carcinogenic
effect of excessive Co level in the thyroid of old
females was assumed. Elevated level of Co in NG
tissues, observed in the present study, supports this
conclusion.
Chromium
Cr-compounds are cytotoxic, genotoxic, and car-
cinogenic in nature. Some Cr forms, including hex-
avalent chromium (Cr6+), are toxicants known for
their carcinogenic effect in humans. They have been
classified as certain or probable carcinogens by the
International Agency for Research on Cancer (86).
The lung cancer risk is prevalent in pigment chro-
mate handlers, ferrochromium production workers,
stainless steel welders, and chrome-platers (87). Ex-

cept in Cr-related industries and associated environ-
ments, Cr intoxication from environmental exposure
is not common. However, it was found, that drinking
water supplies in many geographic areas contain
chromium in the +3 and +6 oxidation states. Expo-
sure of animals to Cr6+in drinking water induced
tumors in the mouse small intestine (88). Many other
animal experiments and in vitro studies demonstrate
also that Cr can induce oxidative stress and exert cy-
totoxic effects (89). Besides reactive oxygen species
(ROS) generation, oxidative stress, and cytotoxic
effects of Cr exposure, a variety of other changes like
DNA damage, increased formation of DNA adducts
and DNA-protein cross-links, DNA strand breaks,
chromosomal aberrations and instability, disruption
of mitotic cell division, chromosomal aberration,
premature cell division, S or G2/M cell cycle phase
arrest, and carcinogenesis also occur in humans or
experimental test systems (87).
Iron
It is well known that Fe as TE is involved in many
very important functions and biochemical reactions
of human body. Fe metabolism is therefore very
carefully regulated at both a systemic and cellular
level (90, 91). Under the impact of age and mul-
tiple environmental factors the Fe metabolism may
become dysregulated with attendant accumulation
of this metal excess in tissues and organs, includ-
ing thyroid (25, 26, 29–35). Most experimental and
epidemiological data support the hypothesis that Fe
overload is a risk factor for benign and malignant
tumors (92). This goitrogenic and oncogenic effect
could be explained by an overproduction of ROS and
free radicals (93).
Mercury
Hg is one of the most dangerous environmental
pollutants (94). The growing use of this metal in
diverse areas of industry has resulted in a significant
increase of environment contamination and episodes
of human intoxication. Hg damages the central ner-
vous system and has irreparable effects on the kid-
neys (95). Hg may also harm a developing fetus and
decrease fertility in men and women (96). Besides
these effects, Hg has been classified as certain or
probable carcinogen by the International Agency
for Research on Cancer (86). For example, in Hg
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polluted area thyroid cancer incidence was almost 2
times higher than in in adjacent control areas (97).
Negative effects of Hg are due to the interference of
this metal in cellular signaling pathways and protein
synthesis during the period of development. Since
it bonds chemically with the sulfur hydride groups
of proteins, it causes damage to the cell membrane
and decreases the amount of RNA (98). Moreover,
it was shown that Hg may be involved in four main
processes that lead to genotoxicity: generation of free
radicals and oxidative stress, action on microtubules,
influence on DNA repair mechanisms and direct
interaction with DNA molecules (99).
Scandium
Sc is a rare earth element. Information about its
physiological role is very limited. However, toxic
effects concerning Sc propensity to displace calcium
in many biochemical events and its carcinogenic
potential have been reported (100, 101).
Zinc
Zn as a trace metal plays an important role in nor-
mal and pathophysiology. This TE is a constituent
of more than 3000 proteins and is a cofactor for
over 300 enzymes (102). Zn is an essential mediator
of cell proliferation and differentiation through the
regulation of DNA synthesis and mitosis. Zn also
affects DNA repair pathways by regulating multiple
intracellular signaling pathways and altering proteins
involved in DNAmaintenance (103). This metal also
maintenance the balance of a cellular redox (104).
Thus, Zn is important cofactors in diverse cellular
processes, but its high concentrations are toxic to
the cells. The elevated level of Zn mass fractions in
thyroid tissue may contribute to harmful effects on
the gland. There are good reasons for such specula-
tions since. experimental and epidemiological data
support the hypothesis that Zn overload is a risk
factor for benign and malignant tumors (103, 105–
107).
Our findings show that mass fraction of Ag, Co, Cr,
Fe, Hg, Sc, and Zn are significantly higher in NG as
compared to normal thyroid tissues (Tables 4). Thus,
it is plausible to assume that levels of these TE in
thyroid tissue can be used as NG markers. However,
this subjects needs in additional studies.

5 LIMITATIONS

This study has several limitations. Firstly, analytical
techniques employed in this study measure only ten
TE (Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn) mass
fractions. Future studies should be directed toward
using other analytical methods which will extend the
list of chemical elements investigated in normal and
goitrous thyroid. Secondly, the sample size of NG
group was relatively small. It was not allow us to
carry out the investigations of TE contents in NG
group using differentials like gender, histological
types of colloid NG, stage of disease, and dietary
habits of healthy persons and patients with NG.
Lastly, generalization of our results may be limited
to Russian population. Despite these limitations, this
study provides evidence on goiter-specific tissue Ag,
Co, Cr, Fe, Hg, Sc, and Zn level alteration and shows
the necessity to TE research of NG.

6 CONCLUSION

In this work, TE analysis was carried out in the tissue
samples of normal thyroid and NG of thyroid using
INAA-LLR. It was shown that INAA-LLR is an
adequate analytical tool for the non-destructive de-
termination of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and
Zn content in the tissue samples of human thyroid,
including needle-biopsy cores. It was observed that
in goitrous thyroid content of Ag, Co, Cr, Fe, Hg,
Sc, and Zn were significantly higher than in normal
tissues. In our opinion, the increase in levels of Ag,
Co, Cr, Fe, Hg, Sc, and Zn in goitrous tissue might
demonstrate an involvement of these TE in etiology
and pathogenesis of thyroid goiter. It was supposed
that elevated levels of Ag, Co, Cr, Fe, Hg, Sc, and Zn
in thyroid tissue can be used as NG markers.
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